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1.0
INTRODUCTION

The goal of Phase II is to build a prototype of the broadband fish identification system and demonstrate its ability to classify fish in a marine environment.  The Phase I NSF funding allowed SciFish to design the engineering prototype broadband fish identification system.  During the evaluation period for the Phase II proposal for this project, SciFish received funding from the Alaska Science and Technology Foundation (ASTF) to build the first generation broadband fish identification system.  SciFish has also received funding from the U.S. Department of Commerce (DOC) to fully explore the application of this first generation fish identification system to non-bladder-bearing bottom fish.

With this firm foundation, SciFish has applied the SBIR Phase II funds to the development and demonstration of the production prototype broadband fish identification system in both marine and freshwater environments.  This prototype has led to the commercial version of this broadband fisheries sonar system that is currently being sold to fisheries managers and scientists.

Scientific Fishery Systems, Inc. (SciFish) has demonstrated that broadband fish identification system is significant tool for fish stock assessment.  SciFish’s broadband fish identification system, SciFish 2000, utilizes advanced technologies developed by the defense industry to identify fish to species (with later extensions to abundance and size estimation).  SciFish 2000 utilizes broadband transmissions (versus the traditional narrowband approach) to ensonify fish.  By exploiting the time-bandwidth product inherent to broadband sonarsystems, SciFish detects echoes from underwater targets.  The broadband echoes are processed digitally to produce frequency spectra that are combined with traditional narrowband information (sonogram images of fish target strength intensity versus depth) and presented to a (fuzzy neural network) classifier for identification.  Signatures of fish (fuzzy neural network coefficients) are created by the user for those species of interest.  These signatures are stored in a database where they are later recalled for classification.

This report describes the broadband sonar system and a significant set of field tests conducted in the Great Lakes, Bering Sea, and the Prince William Sound.  In this introduction the project objectives have been reviewed, the motivations for the application of broadband acoustics for fish identification are described, and the potential benefits of this work to fisheries science and fisheries management are outlined.  An extensive background of previous work in fish identification, including a review of prior work conducted by SciFish, is provided in Section 2.  Section 3 reviews the background for this project, including a description of the broadband sonar system and the data processing that it utilizes.  Section 4 outlines the technical approach employed by this data collection and processing project.  Section 5 presents the results produced from this effort.  Section 6 summarizes this report and provides some recommendations for future work.  Section 7 concludes this report with a bibliographic listing of the sources cited in the preceding sections.

1.1
Motivations for Applying Broadband Acoustics to Fish Identification

Techniques currently used to classify fish attempt to characterize their acoustic scattering by measuring the target strength of returned echoes using narrowband active sonar.  As such, available fish detection and classification systems work within the time-domain of the signal and focus on the integration of sonar returns (energy) over a given volume of water.  Fish detection and classification systems of this type are labor-intensive to build, they require specialized training for operation, the narrowband frequencies are not adequate for all species, and their accuracy and robustness depends on a significant amount of operator training.  The Anti-Submarine Warfare (ASW) sector of the defense community realized long ago that sonar was more effectively processed in the frequency domain.  The Principal Investigator assisted in the development of several ASW systems for tactical, strategic and surveillance missions within the Navy and ARPA.  This technology has never been applied to the fisheries.  This project represents the first effort toward converting defense techniques to the fisheries.

SciFish has performed a comprehensive review of previous results in several areas of fisheries hydroacoustics, including estimating fish abundance and size, determining species, fish echo measurements in boundary zones, and an analysis of the sources of backscatter in fish (see §2.0).  Based upon this analysis, it became clear that the fish identification system that would be developed under this effort represents a unique combination of three elements:

1. Broadband Transmission.  Current fish finding sonar systems emit narrowband energy in one or two frequencies.  Broadband echoes contain more information because some frequencies will provide greater backscatter within one fish species relative to others.  A few efforts have used broadband data for fish speciation with promising results, but, until now, the results have always been thought to be too technically demanding to be practical.
2. Spectral Representation.  Existing fish finding sonar systems integrate echoes, count echoes, or track fish (time-domain processing).  Spectral processing provides a rich representation not available to time-domain processing.  Using spectral decomposition, it will be possible to determine which frequencies are most strongly reflected by the fish targets.  This spectral information will be used for classification.
3. Neural Network Identification.  Existing fishery sonar systems are able to identify fish to species (as well as size and abundance) only when large numbers of fish are available over long periods of time and/or their target strengths (i.e. size) are sufficiently different.  The neural networks in the SciFish system, working with the spectral decomposition of broadband echoes, will classify fish to species (with later extensions to size and abundance) in real-time.
1.2
The Potential Benefits of Broadband Fish Identification

The successful development of a broadband fish identification system will benefit fisheries science and management in the following areas:

1. Full-Column Assessment.  Trawl surveys can only collect fish in a small portion of the water column.  When the fish biomass exceeds the width of the trawl, the broadband fish stock assessment can be used to augment the trawl surveys and produce more accurate estimates of fish abundance.
2. Continuous Assessment.  Trawl surveys require periodic deployment and retrieval of a net over several areas.  The areas between the survey stations can be augmented with the fish stock assessments produced by the broadband fish identification system and traditional hydroacoustic fish stock assessment techniques.
3. Fish Behavior Analysis.  This technique can provide quantitative and qualitative information to fisheries scientists for large regions that will allow them to gain a deeper understanding of fish ecology and biodynamics.  This is especially significant when this capability is extended to include fish larvae and zooplankton.
4. Cost Savings.  This technique can provide the following possible cost-saving and time-saving advantages:
· Automated assessment could mean less training will be needed to operate the sonar equipment, which will allow senior fisheries biologists to spend more time focusing on the difficult management issues and less time on assessment exercises;

· Fewer research vessels might be used for assessment which reduces operations costs;

· More area could covered in the same amount of time because trawling will not singularly be required for stock assessment (e.g. trawling speed is 2-4 knots, assessment speed would nominally be 6-12 knots - as much as three times the coverage per unit time).

2.0
PREVIOUS WORK

Echo sounders have been used successfully for over 50 years by commercial fishermen and fisheries scientists to locate fish aggregations.  During that time, biological interpretation of acoustic information has progressed from qualitative and highly subjective assessments (presence or absence of acoustic ‘marks’) to the development of the quantitative methods of fisheries acoustics (Mitson, 1983).  The application of acoustic methods to assess both the distribution and abundance of aquatic organisms has paralleled (and at times led) these developments (DFO, 1988).

The first attempts to record and analyze acoustic information were prompted by the development of paper chart recorders (Templemann & May, 1965).  In these early studies, biological interpretations of acoustic information were essentially characteristics of various fishes.  Although the potential for quantitative interpretation of acoustic data was well recognized by the 1960’s, limitations in the accuracy and precision of acoustic signals slowed their development.

In the 1970’s, improvements in echo-sounder and time-varied-gain (TVG) accuracy and precision, the development of multibeam acoustic systems (Ehrenberg, 1979; Traynor & Ehrenberg, 1979), and the demonstration of the frequency dependence of sound scattering by organisms of different sizes, led to increasing efforts to interpret acoustic signals quantitatively.  This work led to quantitative acoustic surveys of pelagic fishes such as capelin (Mallotus villosus) and Atlantic herring (Clupea harengus).  The success of these surveys heralded a new era in which acoustic information became the key element of pelagic fisheries assessment.

In the 1980’s, the advent of high-speed analog/digital voltage converters, portable computers, and mass data storage devices, coupled with new generations of signal analysis software, enabled more accurate, more precise, and more complex processing and storage of acoustic signals (e.g. Stevens, 1986).  These developments led to an increase in signal processing research designed both to improve the accuracy and precision of conventional analytical techniques and to derive new kinds of biological information (e.g. size, species, abundance) from acoustic signals (Dickie, et al., 1983; Rose & Leggett, 1988).

The technical aspect of this project has three distinguishing components: (1) the use of broadband sonar, (2) the utilization of spectral representations for species identification, and (3) the use of neural networks to perform classification.  The details of the technical approach and results, as well as the design for the next evolution of the system are described in Sections 3-5.  This section provides a brief survey of the previous work in fisheries acoustics in an effort to place the Phase I results within the proper context.  There are five areas that will be reviewed: (1) estimating fish abundance; (2) estimating fish size; (3) determining fish species; (4) measurements of fish echoes near boundaries (surface and bottom); and (5) sources of acoustic backscatter within fish.  For more detailed reviews of previous work, refer to Clay & Medwin (1977), Laevastu & Hayes (1981), and MacLennan & Simmonds (1992).

2.1
Estimating Fish Abundance

Many commercially important fish aggregate at densities sufficiently high to disallow the isolation of most individual fish within an acoustic beam.  Hence, the techniques of echo-integration (Burczynski, 1982) are used in most cases to estimate fish abundance, both in research applications (Rose & Leggett, 1988; Venema, 1992; Denbigh & Smith, 1987) and in the assessment of capelin (Miller et al., 1978), Atlantic herring (Buerkle, 1987; Wheeler et al., 1988), redfish (Atkinson, 1982), roach (Bjerkeng, et al., 1991), anchovies (Squire, 1978), alewives, rainbow smelt, and bloaters (Argyle, 1992), Pacific whiting (Williamson & Traynor, 1984), and Pacific herring (Pedersen & Boettner, 1992).

Integrator outputs (mean backscatter over some spatial range) can be used either as indices of so-called ‘relative’ abundance (by assuming a stationary but unquantified target strength) or scaled to fish densities with an estimate of the mean target strength.  Inaccurate or inconsistent scaling factors (mean target strengths) can cause large biases in integrator outputs.  For example, discrepancies of 3 dB in mean target strength would result in a 100% bias of integrator values.  If acceptable errors for surveys of biomass are 20 - 25%, the target strength errors must be limited to 1 dB (and probably less because of sampling and other additive errors).  This level of precision is likely to be feasible only through continuous in situ target strength measurement (Ona, 1990).  It is important to emphasize that the biases imposed on biomass estimates by target strength errors or discrepancies apply both to relative estimates, those expressed as volts or decibels, and to absolute estimates, those converted to kilograms or fish numbers.  True relativity can only be achieved through unbiased scaling.

To minimize error, the scales (temporal and spatial) of target strength variability should be determined in situ.  In some cases, when surveys are conducted over short time periods under homogeneous conditions of fish behavior and physiology, mean target strengths may be stationary within a survey.  However, over the temporal (24 hour days, different seasons, years) and spatial (hundreds of kilometers) scales of many acoustic surveys, non-stationary target strengths are to be expected because the factors known to influence target strength can vary systematically at these scales.  For example, many species of pelagic and demersal fishes tend to aggregate spatially on the basis of body size (Pitcher et al., 1985; Gordoa & Duarte, 1991).  Moreover, systematic spatial and temporal variations in fish condition, maturity state, depth occupied, and behavior that are known to influence target strength (Ona, 1990; Thorne & Thomas, 1984) can occur both between and within surveys.  The use of target values averaged over inappropriate spatial or temporal scales is likely to introduce systematic biases into integration-based biomass calculations.

An additional consideration in the application of target strength measurements is their precision.  Single measures of backscatter from standard targets, corrected for beam directivity using dual-beam techniques, typically range over several decibels (any position within the half-power of the beam).  For single fish, directivity differences largely attributable to swimbladder deformations (Buerkle, 1987) cause the range of target strengths to be much greater, to 14 dB for cod (Gadus morhua) swimming in approximate dorsal aspect (Nakken & Olsen, 1977).  For in situ measures of the target strengths of individual fish during surveys, the range is greater still (presumably due to the greater range of size, behavior, aspect, and physiologies encountered).

As the variability in observed in situ target strengths within an assessed population increases, greater sample sizes will be required to estimate the mean target strength with a given statistical precision.  For example, for standard targets, the Coefficient of Variation (CV) of the backscattering cross-section is typically less than 0.1.  To achieve a target strength estimate within 1 dB of the true mean thus requires only ten echo samples.  However, for single swimming fish, the CV often approaches 1 (Nakken & Olsen, 1977).  At this level of variation, 80 samples are required to achieve similar precision.  For in situ measurements of mean target strength, CVs are expected to be higher still, because of the likelihood of an increase in the variations in size, behavior, physiological condition, and other factors which influence target strength.  For example, target strength measures from cod shoals in the northern Gulf of St. Lawrence exhibited CVs ranging up to 5.  Hence, sample sizes of the order 2000 would have been required to estimate the mean target strength of these shoals within 1 dB of the true mean.  In cases where large sample sizes are not feasible, a less precise estimate of the mean constant over spatial or temporal scales larger than those sufficient to ensure the required precision, more accurate scaling of target strength are possible.

In this connection, comparisons of mean outputs from systems having different operating frequencies (or scaling of integrator outputs with mean backscattering cross-sections determined for a different frequency) are likely to be biased.  In general, systems operating at higher frequencies will be expected to measure somewhat higher fish target strength values than at a lower frequencies (Love, 1971; McCartney & Stubbs, 1971; Johannesson & Mitson, 1983).  Several empirical studies have confirmed this expectation (e.g. Foote, 1990), although higher target strengths at lower frequencies have also been reported (Degnbol et al., 1985).  Preliminary comparisons of the mean target strengths of cod and capelin measured at 38 and 120 kHz in Newfoundland waters suggest consistently higher values at the higher frequency in the order of less than 1 dB for large Atlantic cod (40 - 120 cm) to 2-3 dB for capelin (12 - 18 cm) (Rose, 1992).  Also, increased directivity of backscatter from fish at higher frequencies may cause greater variance in target strength measures at higher (e.g. 120 kHz) relative to lower (38 kHz) frequencies (Miyanohama et al., 1990).

A keystone problem in determining in situ target strengths, especially for shoaling species, is that only a very low proportion of the individual fish, possibly unrepresentative of the majority, may be isolated within the acoustic beam.  For example, in attempts to assess the mean target strength for each of 40 capelin and mackerel (Scomber scombrus) shoals in shallow waters (less than 50m), using a 120 kHz echosounder and 10 - 25 degree transducer, less than five single targets could be isolated from 18 shoals (Rose & Leggett, 1988).  Attempts to isolate individual fish from within herring shoals has (predictably) proven even more difficult.  Most shoals yield only a few single measures of certain identity.  Attempts to enhance sampling rates are being made by using narrower beams (3 - 4 degrees) and shorter pulse durations (0.2 - 0.3 ms).  However, it is unlikely that technical innovations can resolve the fundamental ecologically based limitation imposed by fish spacing.  For such species, in situ determined target strengths are likely to require experimental verification.  Still, an unbiased estimate of target strength will be likely to remain an elusive property.  Although enclosure experiments can yield precise acoustic measures relative to known fish species, size, behavior, and condition, these measures may not be directly comparable to in situ values (MacLennan et al, 1990).

Multibeam techniques hold great promise to enable the in situ measurement of target strength required to scale integrator values without bias.  However, uncertainties remain about the spatial and temporal scales of target strength variability, the causes of this variability, and the sampling intensity required to achieve suitably precise estimates.  Further research would be needed to quantify these factors to determine how in situ target strengths can be optimally used to scale integrator outputs.  At present, we are limited to assumptions of constancy in target strength, and the use of undoubtedly biased average values derived largely from experimental and theoretical studies, or from field studies conducted over inappropriately large spatial and temporal scales (e.g. Love, 1971; Nakken & Olsen, 1977; Foote, 1987; Rose & Leggett, 1988).

2.2
Estimating Fish Size

Multibeam techniques enabling the calculation of in situ target strength have the potential to provide estimates of the body size of individual organisms (Holliday, 1977; Dickie et al., 1983).  However, a fundamental difficulty in these methods is that the relationship between acoustic size (target strength) and body size is not constant.  Rather, this relationship is known to be dependent on variations of fish behavior (Dawson & Karp, 1990), especially tilt angle (Love, 1971), feeding and reproductive conditions, and, for some species, on depth (especially the physoclists through swimbladder compression) (Ona, 1990; Thorne & Thomas, 1990).  Variations in in situ directivity caused by the aspect of the fish and transducer have been tested by experimental manipulations.  Hence, regressions of fish size on acoustic size calculated ex situ and under controlled conditions (Love, 1971; Nakken & Olsen, 1977; Foote, 1987; Rose & Leggett, 1988) may be biased relative to in situ measured target strengths which typically reflect unknown conditions of aspect, behavior, and physical condition.

Sizing techniques are further constrained by the same limitations of statistical precision applicable to the measurement of target strength.  It is reasonable to expect that increasing sample sizes, and averaging target strengths by fish rather than over an arbitrarily defined space, should yield better acoustic size discrimination (Ehrenberg, 1984; Dawson & Karp, 1990).  However, in situ sample sizes may be too small to attain much advantage.  For example, for in situ target strength data, the sample size (number of pings on one fish, n) is typically less than ten, and seldom greater than five.  If n=4, then 95% of an in situ estimate of target strength would be approximately +/- 3 dB (for a target exhibiting a CV of one while swimming at near dorsal aspect).  Hence, on average, the length of an individual fish having similar aspects, physiologies, and behaviors, would have to differ by a factor of two to enable relative size discrimination.  Better precision can most readily be attained by increasing sampling rates, and, if possible, by measuring more stable targets (e.g. sample sizes as large as 12 with CV’s of 1 dB have been attained on Atlantic cod.

Currently, limitations imposed by bias and imprecision indicate that interpretations of body size from in situ target strength distributions be approached with caution.  However, the benefits of providing size data from acoustic measures are great enough to warrant continuation of this line of research.  Further research will be needed to determine more accurate sizing, possibly through the application of ecological theory and observation to acoustic methods.  Many of the factors influencing target strength (acoustic size) are thought to vary systematically, not randomly.  If so, and the spatial and temporal scales and magnitudes of variability can be quantified (and corrected for), then more accurate biological sizing from acoustic data may become more feasible.

2.3
Determining Fish Species

Species identification has been problematic in fisheries acoustics (Rose & Leggett, 1988; Foote, 1990; MacLennan & Simmonds, 1992).  The traditional methods of ground truthing acoustic signals with net captured organisms are often biased (e.g. Thorne, 1987; Nakashima, 1990), at times missing whole classes of targets that comprise part of the acoustic signal.  Moreover, the spatial and temporal resolution of net sampling is often difficult to compare with the higher resolution and more comprehensive acoustic data.

Two approaches other than direct capture have been under investigation to aid target identification: mean target strength and shoal description.  The two methods can be used together and in conjunction with visual echogram interpretations.  More complex broadband methods, like the method being applied under this effort, have been shown to have potential to classify targets but have always been thought to be too technically demanding to be practical for acoustic surveys (e.g. Zakharia, 1990; Simmonds & Copeland, 1986 & 1989; Simmonds & Armstrong, 1990).  Mean target strength has been used to discriminate between species whose acoustic sizes differ, on average, by more than a factor of two.  For example, mean target strength correctly discriminated between cod (mean size 50 cm) and capelin (mean size 15 cm) shoals in the northern Gulf of St. Lawrence with 90% accuracy (Rose & Leggett, 1988).  However, the same study showed that target strength could not be used to classify shoals of cod, capelin, and mackerel, because the target strengths of 16 cm capelin and 40 cm mackerel (no swimbladder) were similar.  Moreover, the inability to isolate a large number of representative single targets within the dense shoals of capelin, mackerel, and herring, limits the use of target strength as a species discriminator.  For example, despite experimental evidence that herring have target strengths approximately 10 dB greater that mackerel of similar size, target strength has not been a reliable discriminator of shoals of these species (Rose, 1992).

Shoal description techniques were first used by commercial fishermen to improve catch selectivity.  As used by marine scientists, these techniques were initially qualitative and carried out by subjective interpretations of low-resolution echogram marks (e.g. Beamish, 1966).  The potential for more objective classification techniques was recognized in the 1970’s (Deuser et al., 1979; Giryn et al., 1981), but the lack of processing power retarded their development.  The advent of high speed analog-to-digital converters and inexpensive and portable digital computers has enabled fast quantitative high resolution analyses of the shapes and patterns of shoal signals.  Rose and Leggett (1988) used quantified shoal characteristics to develop multivariate discrimination functions for shoals of Atlantic cod, capelin, and mackerel.  These techniques are based on acoustic interpretation of fundamental biological and ecological characteristics of aggregations of these fishes.  Signal descriptors known to have discriminatory power include shoal position in the water column (depth, distance from bottom), gross shoal measures (dimensions and shape), and measures of the signal pattern from within the shoal (measured in time or frequency domain) (Scalabrin & Lurton, 1994; Scalabrin, et al., 1996).  Quantitative descriptors of fish aggregations (schools, shoals, assemblages) can be calculated for signals derived from single of averaged echosounder pings (Vray et al., 1990), from echogram images (Richards et al., 1991), and from low-frequency echoes (Thompson & Love, 1996).

2.4
Measurements of Fish Echoes Near Boundaries

The application of acoustics has been constrained by the inability to measure organisms located adjacent to the surface, bottom, or other boundary conditions (Mitson, 1984).  Surface resolution is typically limited by transducer depth, blanking range, and surface noise.  For species for which vertical distributions occur daily (e.g. herring), surface resolution problems are avoided by conducting surveys during daylight hours when fish are aggregated in deeper waters (Buerkle, 1987; Wheeler et al., 1988).  Average near-surface fish densities can be estimated by periodic raising of the towed body (under calm conditions).  Temporal variations in fish distribution (Laevastu & Hayes, 1981; Rose & Leggett, 1988) and target strengths (Thorne & Thomas, 1990), relative to meteorological and oceanographic conditions, may require quantification.

The application of acoustic methods to demersal species often depend on obtaining unbiased measures of fish abundance near bottom (or measures wherein bias is constant and quantified).  One approach to better bottom resolution is to optimize system performance by the use of higher frequencies, shorter pulse widths, and narrower beam patterns (Mitson, 1983).  However, the potential for manipulation of these factors is not unlimited.  The attenuation of frequencies above 120 kHz largely disallows their use at depths greater than 200 m.  Pulses of less than 0.3 ms duration may distort received signals.  Narrower beams reduce sampling volume and require more stable deployment platforms.  For example, using a 120 kHz, 4 degree beam (half-power angle) transducer issuing 0.4 ms pulses, the bottom resolution is approximately 0.5 m at 100 m.  At 38 kHz, using a 6-7 degree beam transducer and pulse duration 0.4 ms pulse, bottom resolution is approximately 1 m per 100 m of surveyed water column.  An unknown portion of the fish surveyed will be located within this unresolvable ‘dead zone’ (Mitson, 1983), thus potentially introducing bias into acoustic measurements.

The best solution to bottom resolution problems is to undertake the acoustic measurements at times when most individuals (or a fixed and high proportion) are above the dead zone and available to the acoustic sampling beam.  To do this successfully requires extensive knowledge of the ecology of the target species.  Vertical distributions may result in systematic diel differences in dead zone related biases.  Good survey design exploits these conditions.

Ideal survey design notwithstanding, fish distributions are never fixed and always somewhat uncertain.  Unbiased methods of estimating fish densities within the dead zone may still be required.  Two methods to lessen dead zone bias have recently been proposed (Rose, 1992).  The first involves optimizing hardware configuration and improving signal analysis to improve bottom resolution for offshore and inshore ocean bottom types.  The second uses trawl estimates of fish density in the lower few meters (the dead zone) in conjunction with the acoustic estimates of pelagic densities.  Methods to optimally combine acoustic and trawl sampling methods are under investigation and will likely provide the key to better fish abundance estimates.

2.5
Sources of Acoustic Backscatter Information

The acoustic backscatter from fish can be processed using many different techniques to produce a signature that can be used for classification, including statistical parameters, spectral representation, and echo shape.  The sources of acoustic backscatter can provide some insight into the classification process.  The swimbladder, head, and vertebrae provide three sources of acoustic backscatter.  In addition, the motion of the fish can result in Doppler information that is also useful for identification.  The following two sections provide some insight into each of these sources of backscatter information.

2.5.1
Swimbladder, Head, and Vertebrae Backscatter

There have been several studies of the acoustic backscatter from fish.  Most research has focused on the resonance of the swimbladder as the primary source of scatter, but other researchers have found this is not the only structure that reflects acoustic energy (Jones & Pease, 1958; Diercks & Goldsberry, 1970; Lovik & Hovem, 1979).  Nash, Sun & Clay (1987) have analyzed the acoustic anatomical structure of a fish.  Eight species of fish were analyzed to determine their percentage of backscatter energy for the head, swimbladder, and vertebrae.  Table 1 shows the percentage of backscatter for three of these species.  It is clear from the table and figure that the swimbladder is the largest source of backscatter energy, but they also show that both the head and vertebrae contribute a respectable amount of backscatter energy as well.  As an example, less than 80% of the backscatter of both the Yellow Perch and the Largemouth Bass comes from the swimbladder.  The remaining backscatter is from the head, vertebrae, and viscera/muscle tissue.

Table 1.  Relative Portion (%) of Backscattered Energy from Three Species of Fish
(One Standard Deviation in Parenthesis)

Species
Swimbladder
Head
Vertebrae
Viscera/Muscle

Yellow Perch
79.4 (3.2)
6.1 (1.9)
2.7 (1.6)
11.8 (4.5)

Largemouth Bass
79.4 (20.2)
11.9 (5.4)
11.5 (8.2)
-

Rock Bass
94.5 (4.7)
12.8 (5.1)
7.3 (1.4)
-

2.5.2
Doppler Information within Backscatter

When a target moves along the radial line of a sonar beam, it creates a frequency shift.  This change in frequency is caused by the Doppler effect.  Fisheries sonar can measure the frequency shift caused by the motion of fish and this information can be used as an additional cue for identification.  Doppler sonar has been used to study the movement of schooling fish (Holliday, 1977a) and the migration of salmon in rivers (Johnston & Hopelin, 1990).  Although Doppler sonar are used primarily to count fish in riverine environments (Dahl & Mathison, 1984; Pincock & Easton, 1978), there is a relationship between fish length and tailbeat frequency (Bainbridge, 1958) that can be exploited in a broadband system.

2.6
Fish Identification with Neural Networks

2.6.1
Fish Identification Work By SciFish

Wideband Fish Identification.  During Phase I of this project, SciFish demonstrated that fish identification to species was possible using actual fish echoes.  Using narrowband data supplied by Ontario Hydro Research Division, SciFish demonstrated feasibility of the approach.  In this previous work, the detection problem was decoupled from the species classification problem because the riverine environment requires detection and classification, but the marine environment needs to focus only on classification.  The classification performance using averaged echoes and shape information, spectral information, the fusion of shape and spectral information, as well as the performance of the fusion of shape and spectral information on single echoes, is summarized in Table 2.  The resulting performance is more than adequate for an operational fish identification system in either a riverine or marine environment.

Table 2.  Summary of Classification Results (All Numbers are % Correct)


Fish/Debris

Detection
Walleye/Sturgeon

Classification
Combined

Detect/Classify

Shape Information (Avg. Echoes)
86.78
88.32
76.64

Spectral Information (Avg. Echoes)
91.16
87.59
79.85

Shape/Spectral Fusion (Avg. Echoes)
92.40
94.80
87.60

Shape/Spectral Fusion (Sgl. Echoes)
85.16
86.51
73.67

Broadband Pelagic Fish Identification.  SciFish recently built a broadband fish identification system for determining the full potential of fish identification using the combination of neural networks, broadband sonar, and various forms of feature extraction.  This system is fully described in §3.1.

Following the first Phase of this project and prior to the commencement of this second Phase, SciFish conducted some joint research with the U.S. Geological Survey Great Lakes Science Center's (USGS/GLSC).   USGS/GLSC, located  in Ann Arbor Michigan, invited SciFish to join one of their fall stock assessment surveys off Port Ludington on the Eastern shore of Lake Michigan.  Data were collected in conjunction with the NBS trawl survey of deep and mid-water sections (Table 3).  Since NBS maintains statistical descriptions of the species composition at various depths and since there are just two prominent species present off Port Ludington, this cruise served as an excellent first data collection.  Because species distribution with depth is relatively pure and the depths of the fish echoes are known from their arrival time, the species for each echo can be inferred with relatively high accuracy.

The two prominent species, bloaters and alewives, and a third less common species, rainbow smelt, are outlined in the list below.  According to the NBS statistics, young-of-the-year (YOY) alewives were found exclusively in the upper ten meters below the surface and bloaters were the dominant species at depths greater than 34 meters.  Some rainbow smelt and adult alewives were found in the upper 15 meters.  Trawls were dragged at unevenly spaced depth intervals from 6 to 85 meters.  Rainbow smelt made up 0.1 percent by quantity of the total trawl samples.  Bloaters accounted for 50% and YOY alewives accounted for 25% of the trawl samples.

More than 350 megabytes of raw data were collected over the four-day trawl survey.  All these data have been post-processed and had parameters extracted.  A simple preliminary neural network was able to discriminate between the bloaters and the alewives with approximately 80% rate of success.

Table 3.  Species Encountered in Lake Michigan

Common Name
Species 
Primary Depth Cell

Alewife
Alosa pseudoharengus
5 to 60 meters (0 to 10 m YOY)

Bloater
Coregonus hoyi
28 to 95 meters

Rainbow smelt
Osmerus mordax
5 to 28 meters

Broadband Demersal Fish Identification.  In a Phase I SBIR project funded by the Department of Commerce, SciFish used their recently built prototype broadband fish identification system to collect (demersal) bottomfish data and determine fish classification accuracy.  The identification results using data collected in the Prince William Sound was promising.  Using spectral and shape features extracted from single broadband echoes, SciFish has been able to achieve the following results (Confusion Matrices) for two species of fish (Halibut and Rockfish) and the bottom (Tables 4 and 5).

Table 4.  Two Class Experiments and Three Class Experiments

(a) Two Class Results


ROK
HAL

ROK
BOT

HAL
BOT

Rockfish
.79
.21
Rockfish
.81
.19
Halibut
.76
.24

Halibut
.12
.88
Bottom
.22
.78
Bottom
.16
.84

(b) Three Class Results


HAL
ROK
BOT

HAL
.68
.11
.21

ROK
.10
.68
.22

BOT
.08
.24.
.69

The bottom processing is done to determine if the broadband echoes' properties change when fish are present in the sonar dead zone near the bottom.  These results are extremely encouraging, especially when you consider that Halibut have no swim bladder -- the primary acoustic target for current fish finding systems.

2.6.2
Fish Identification Work By Others

The first known use of neural networks for fish species identification was performed by Ramani & Patrick (1992).  With the exception of this work (and ours), there had been no research conducted that combined neural networks with wideband or broadband sonar for fish species identification.  This has recently changed.  At the ICES International Symposium on Fisheries and Plankton Acoustics held in Aberdeen Scotland (June 12-16, 1995), two other prominent fisheries hydroacoustic research groups presented papers describing the use of neural networks to fish species classification.  The following is a summary of this work organized by country.

Canada.  The first known use of neural networks for species identification was performed by Ramani & Patrick (1992).  In this research, a 420 kHz transducer was used to collect data from four species of fish (brown bullhead, rainbow trout, sturgeon, and walleye).  Wideband echoes 192 samples in length were used for classification.  A multi-layer perceptron (MLP) was used for classification, producing between 90% and 97% correct identification overall.

Greece.  Haralabous & Georgakarakos (1996) have applied a MLP to the identification of sardine, anchovy, and horse mackerel.  Using data collected with a 120 kHz transducer from 1992 and 1993, several parameters were extracted from detected fish schools that described morphological, bathymetric, and energetic characteristics.  Using these parameters, a comparison in performance between discriminant function analysis (DFA) and the MLP was conducted.  For the three species, the combined correct classification using DFA was 82.9%, while the MLP provided 95.9% correct classification.  Closer examination showed that the majority of the difference in performance resulted from the misclassification of 25% of the sardine schools as anchovy schools.

Scotland.  This research is the most similar to the approach explored during this project.  In this work, a wide-band (27 - 54 kHz) transducer was used to collect echoes from five species of fish (cod, haddock, saithe, mackerel, horse mackerel).  Averaged spectra were extracted for durations of 6 seconds, 30 seconds, and 5 minutes and used as features for the classification experiments.  Like the experiments from Greece, DFA and MLP classifiers were compared for test sets of 20, 100, and 1000 echoes.  In most cases, the MLP was more successful at recognizing categories than the DFA technique.  When 1000 samples were used, both techniques provided better than 95% correct classification.  One of the conclusions that resulted from these experiments was the clear need for a large number of aggregations for training.

3.0
BACKGROUND

This section provides the background on each aspect of the broadband fish identification process. The details the broadband system that was used to collect the data is given in §3.1.  The data processing steps are outlined in §3.2, including a relatively detailed description of the fuzzy neural network classifier that was used on this project and an overview of matched filter processing.

3.1
Broadband Sonar System Overview

In 1995, under separate funding, SciFish built and tested an active broadband acoustic fish identification system (Simpson & Penvenne, 1995).  This instrument (Figure 1) was used to collect midwater pelagic data (see §2.6.1) and the bottomfish data used on this effort.
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Figure 1.  SciFish's First Broadband Sonar System

Three types of transmit waveforms were programmed in to the RD Instruments electronics.  The available transmit waveforms include pulsed CW at any single frequency between 100 kHz and 200 kHz, linear FM sweep (chirp) over the entire range of frequencies with positive or negative frequency slope, and pseudo-noise (PN, phase coded) sequence as is used in the current profiling product application at RDI.  RDI’s pseudo-noise code sequence was modified so that the first 13 elements transmitted represent a Barker Code for maximal bandwidth energy.

The CW mode emulates modern echo-sounder and fish finder technology and provides a simple waveform for use evaluating ambient noise and adjusting receiver gain at fixed frequencies of interest.  The FM mode provides a well-characterized broadband signal than can be matched filtered and whose returns are rich in spectral content.  The PN mode is meant to impart maximum spectral energy into the water column for a given pulse length.  These returns too can be matched filtered and, of course, are also rich in spectral content.

The transducer housing contains the analog electronics for transmit and receive, transducer tuning, and the four-stage receiver amplifier.  Ping transmit waveforms travel to the transducer housing and an analog signal representing the acoustic returns travels up the underwater cable to the RD Instruments VM Chassis.  The RD Instruments VM Chassis controls the sonar transmit cycle and sends the appropriate waveform signal.  It also accepts serial ASCII commands from the SciFish 2000 processing platform to configure all aspects of the transmit waveform and provides trigger and raw signal to the processing platform over two coaxial lines.  In the FM mode, the RDInstruments VM Chassis receives it’s timing clock and waveform from the HP Function Generator.  For CW and PN modes, the function generator provides a fixed timing clock only.

The transmit power is fixed but the receiver gain can be adjusted in four fixed steps which are set to 18 dB, 41 dB, 64 dB, and 87 dB.  For most experimental work, the gain was set to 64 or 87 dB.  At any gain setting, preamp input impedance is much greater than the transducer output impedance allowing a gross estimation of the instantaneous sound pressure level from the digitized amplitude.

A stainless steel mounting bracket was fabricated.  When fitted with the stainless steel mounting bracket, the transceiver housing is suited for hull mounting, towfish deployment, or dangling by ropes from a raft or a ship.

3.1.2 System Specification

The first broadband sonar prototype was adequate for a great deal of data collection and demonstration of the feasibility of our species classification approach.  There were several areas, however, that needed improvement, including:

· Increased target detection range through higher power source level transmit power, and

· Two beams are needed, a wide-beam (15 degrees) for caged fish and shallow water experiments, and the narrow-beam (4 degrees) for deeper fish stock assessment and near-bottom processing.

The following system specifications were considered minimal requirements for the second prototype.

1. Control/Display Subsystem
1.1. A general purpose CPU (P5-100 or better),

1.2. at least 3 open PCI slots,

1.3. at least 3 open ISA slots,

1.4. keyboard,

1.5. monitor (( 14”, .28 dot resolution),

1.6. pointing device (mouse or trackball),

1.7. Removable storage media,

1.8. Fixed mass storage (at least 2 GB) (optional SCSI-2 bus), and 

1.9. serial and parallel ports.

2. Transmit Subsystem
2.1. Waveform generator capable of pulsed signals to include at least: CW, FM Chirp, and Pseudo-Random Codes (PRC).  Control may be necessary as to start and ending zero-crossing, or alternately time-series filtering to minimize transducer transients.

2.2. Broadband amplifier of sufficient power to achieve SPL in concert with transducer and impedance matching network.  (Impedance network optionally co-located in transducer).

2.3. T-R switch (Optionally located in transducer).

2.4. Connection to transducer.

3. Receiving Subsystem
3.1. Connection to transducer after T-R switch.

3.2. Input filtering to include bandpass filtering to remove both low frequency noise and provide anti-alias filtering.  (Optionally located in transducer.)

3.3. Preamp sufficient to optimize input to A/D.  Optionally located in transducer, in which case an additional line driver would be necessary to the processing subsystem.

3.4. A/D - 12 bit, 770 KHz (Optionally located in transducer.)  Microstar DAP-3200 ADC/DSP (DAPL) or equivalent.

3.5. Processing S/W.

4. Broadband Sonar Transducer Specification
4.1.  General Characteristics
4.1.1. Frequency Range:

60 to 220 KHz (Desired)







110 (FL) to 190 (FU) KHz (Required)
4.1.2. Beam Characteristics:
Narrow beam: Conic 4° ( 1° @ FU






w/ -13 dB sidelobes







Broad beam: Conic 14° ( 1° @ FU



 



w/ -13 dB sidelobes

4.1.3. Operating Depth:

10 m
4.2. Projector Characteristics
4.2.1. SPL:



(210 dB//1 (Pa @ 1m ( 3dB across the 








Frequency band







225 dB//1 (Pa across band desired

4.2.2. Drive Parameters:

100-500 (S pulses @ 33-270 mS intervals

4.2.3. TVR:



(175 dB//1 (Pa @ resonance

4.2.4. Q:



~2

4.2.5. Tuning/matching:

as required to minimize ringing and couple 







to low output impedance power amplifier

4.3. Hydrophone Characteristics
4.3.1. OCV (Sv):


(-185 dB// 1V/(Pa w/ 30m cable across
 






band, no preamp 






-175 dB// 1V/(Pa over band preferable
4.3.2. Flatness:


( 3dB over 120-180 KHz band






( 12dB over 100-220 KHz band
4.4. Mechanical Characteristics
4.4.1. Mounting:


Through hull

4.4.2. Material:


Potted Urethane in Admiralty brass housing

4.4.3. Weight:


< 20 Kg

4.4.4. Cable:


30m, minimum 5 conductor shielded, with








connector

A system meeting these specifications was built by RD Instruments and delivered to SciFish in late November 1997.

3.1.3
Software Development

The software development used Microsoft Visual C++ and Microsoft Visual Basic. The Windows-based software system highlights include the following:

· A Sonar Control OCX has been written in Visual C++ to configure the sonar system and collect a digital stream of ping data.  This OCX is used within Visual Basic as the sonar control.

· Echogram and oscilloscope displays are used to display either real-time data as it is being collected, or stored data that is being played back from a file.

· Echo storage and retrieval is automated.  Data is stored in an Access database for later retrieval and analysis.  The echo storage parameters that are stored are described in Semi-Annual Report 2.

· A matched filter echo detection algorithm is employed to take advantage of the time-bandwidth product provided by the broadband sonar system.  This matched filter system provides superior target detection at lower SNR and with finer spatial resolution.  The current system provides 2 cm cell resolution for -42 dB SNR targets.

· Detected echoes automatically have their spectra extracted.  The granularity of the spectra can be adjusted to any arbitrary resolution within the limits of the PC's computing resources.

· The Fuzzy Min-Max Neural Network is invoked from the software for both training and classification, providing a robust species identification tool that allows users to develop their own signature libraries for species classification.

Below are some screen dumps of various elements of the software.  Figure 2 shows the sonar control interface.  This interface configures the sonar and passes these parameter settings to the transducer.
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Figure 2.  Sonar Control Interface

Figure 3 shows the playback interface that is used to specify which ping file to replay.
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Figure 3.  Playback Parameters

Figure 4 shows the classification interface that is used for training and classifying fish echoes.
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Figure 4.  Species Classification Display

3.2
Data Processing

The functional flow of SciFish’s fish identification system is shown in Figure 5.  Each of the seven functional elements are summarized below.  Details of the feature extraction techniques and the classifier are included in the following sections.

Broadband Transceiver.  The broadband transceiver generates analog echoes, amplifies the echoes, tunes the echoes for the frequency response of the transducer, and transmits the resulting echo from the transducer.  The transducer collects the analog echo returns, applies amplification (with adjustable gain) to the echoes, bandpass filters the echoes and passes the result to the A/D converter.

Analog to Digital Conversion.  The bandwidth of the echoes for the engineering prototype is 110 - 190 kHz.  To satisfy the Nyquist sampling criteria and to achieve sufficient amplitude range and resolution, a 12-bit A/D Converter, with 5 V dynamic range, operating at 770,000 samples per second is used for digitization.  For the engineering prototype, the A/D converter is co-located on the DSP board.  This component is described in detail in §3.1.
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Figure 5.  Functional Overview of the Fish Identification System

Echo Detection.  Echo detection accepts digital signals and produces digital echoes.  Echo detection determines when the sonar pulse has bounced off some object and returned.  A matched filter is used to detect echoes.  The digitized time-series between the echoes is discarded after estimates of Signal-to-Noise-Ratio (SNR) and depth to target are calculated.  Time-varied gain will be applied to extracted echoes.  The extracted echoes are passed along to the next functional component with the SNR and depth.  A description of matched filter processing is included later in the report.

Feature Extraction.  Feature extraction accepts digital echoes and produces echo parameters.  Feature extraction measures specific characteristics of the echo.  Fish identification requires a set of features that are unique to fish taxonomy.  The primary feature set is frequency spectra (computed with a Fast Fourier Transform).  Other features are described in §3.3.1.  The resulting parameters that are extracted for a given fish species are used to create a signature.  The signature for a fish echo is the associated neural network weights.

Signature Data Base.  The signature database stores and retrieves neural network weights (signatures).  The neural network classifier determines how to weight the extracted features to provide the best possible classification decision across all collected echoes.  As such, the signature database is the neural network weights for each fish species being classified.

In addition to the signature, there are several other echo attributes that are stored with each echo.  Table 5 lists these attributes.

Table 5.  List of Echo Attributes Stored in SciFish 2000 DataBase

· Species Name
· Collection Vessel
· Cycles / Code Elt
· Tide Stage
· PSD Length

· Species Code
· Lead Scientist
· Start Frequency
· Surface Temp
· Total Energy

· Length
· Comments
· Stop Frequency
· Sea State
· RMS Energy

· Weight
· File Format
· Pulse Width
· Salinity
· PSD Bandwidth

· Sample Number
· Contact Code
· Pulse Length
· Est. Depth
· PSD Start

· Collect Method
· Software Version
· Num Xmit Elt
· Actual Depth
· PSD End

· Target Range
· Date
· Ping Number
· Echo Samples
· Fish Mortality

· Target Depth
· Time
· Sample Count
· Echo Spectra
· Fish Sex

· Latitude (deg)
· Ping Mode
· ADC Samples
· Echo Threshold


· Longitude (deg)
· Receiver Gain
· Ping Period
· Echo MF Values


· Location Name
· Beam Angle
· Sample Period
· Echo Length


Classification.  The classifier accepts echo parameters (features) and produces species classifications. A fuzzy neural network learns to classify (identify) fish from the extracted features.  The inputs for the neural network are extracted parameters (i.e. shape and spectral information).  The outputs of the neural network have one node for each class.  During training, many different signatures for a given fish species are presented at the input nodes and the network weights are 

Table 6.  Descriptive Parameters for Echo Classification

Single Ping Parameters
Multiple Ping Parameters

§ echo amplitude average, RMS, peak
school ping count

§ echo power spectrum estimate
school energy E, integrated magnitude

§ echo duration
school depth min/max/mean

§ echo depth or range
school altitude min/max/mean

echo full width half magnitude
total depth min/max/mean

echo coherence with transmit pulse
school height H 

echo area, scattering volume
school length L

echo phase continuity
school aspect ratio L/H

echo envelope standard deviation
* school area A

echo envelope edges and peak shapes
* school perimeter P

echo amplitude probability density function
* school perimeter radius min/max/mean/cv

echo energy, total integrated
* school circularity P2/4(A

total depth to seabed, seabed type
* school rectangularity LH/A

target strength estimate
* school fractal dimension 2 ln (P/4) / ln(A)

neural net model hidden unit activations
* school energy max/mean/cv

¥ cyclostationary processes, Prony spectra
* index of dispersion Evar/Emean

linear models: AR, ARMA, MA
ping-to-ping correlation

nonstationary models
immediate classification history

minimum variance spectral estimation

cv = coeff. of variation

impulse modeling
Environmental Parameters

nonlinear models & transformations
time of year

generalized time-frequency representations
time of day

instantaneous time-frequency distributions
location: latitude, longitude

vector quantization
wind speed & direction

eigenvalues - eigenvectors
sea state

¥ homomorphic filtering and cepstrum
cloud cover

¥ multi-channel linear models
precipitation

¥ Wigner, pseudo-Wigner, Wigner-Ville dist.
air & water temperature

¥ time-varying linear models
salinity

¥ high-order moments - bi-tri spectra, fitting
turbidity

¥ Gabor & wavelet transforms
tide, phase of moon

¥ cochlear filter bank
local catch / run history

¥ harmonizable process
wave height and frequency

¥ chaos theory
prevailing current

adjusted to produce a value of one (1.0) for the corresponding output node (the rest will be zero).  The adjustment of the neural network connections between the input and output nodes, represents the adjustment of decision regions or decision surfaces between the various classes.  The resulting weights, as mentioned above, become the signature for the fish species.  The results reported in §2.6.1 use the Fuzzy Min-Max Neural Network for classification (see §3.2.2 for a full description of this neural network).

Man-Machine Interface.  The entire system operates from Windows 95, including sonar configuration, data collection, playback, detection, analysis, and classification.

3.2.1
Fish Identification Parameters

Each item on the following list of parameters (Table 6) has been identified as a practical feature or method for the characterization of underwater acoustic signals.  Many of these parameters will be evaluated in the future.  In Table 6, the parameters preceded by a ‘§’ symbol have been extracted for the preliminary data analysis.  The parameters preceded by a ‘¥’ symbol are from ORINCON (1990) and the parameters preceded by a ‘*’ symbol are from Haralabous & Georgakarakos (1996).

3.2.2 Matched Filter Detection

A Matched Filter is a member of a general class of Weiner filters in which the filter output is maximized for signal to noise ratio (SNR).  The receiver structure is a specialized correlation receiver where the received signal (called y(t), a function, such as voltage, varying in time) is compared to the impulse response of the output signal, yielding a correlation output proportional to how well the y(t) looks like the input signal (we’ll call x(t)).  

A correlator is an optimum way of detecting the signal x(t), shown mathematically (for the autocorrelation case) as 

Cxx(() ( (0( x*(t) x(t+() dt,

where ( is the delay in time, and x* is the conjugate of x.  The Wiener-Khinchine theorem show that we can shift between time (or time delay) and frequency via

Sxx ( (0( Cxx(() cos(2(f() d(
or

Sxx ( X(f) X*(f)
This is possible because x(t) has the spectrum (Fourier theory) X(f).  Proportionalities are used because the amplitudes are arbitrary.  If x(t) is the input and we require an output to look like the correlation (h(t) ( Cxx(t)), then the spectrum of the signal X(f) times the spectrum of the filter F(f) needs to look like Sxx(f).  Then the logical sequence follows:

H(f) ( X(f)X*(f) ( X(f)F(f) ( Sxx(f),

where H(f) is the spectrum of h(t) or
F(f) ( X*(f)

h(t) ( (-((   X*(f)X(f) exp (i2(ft) df

in the frequency domain, or
h(t) ( (-((    x*(t’)x(t’+t) dt'

in the time domain.  These latter 2 equations imply several ways to implement a matched filter: in hardware as a delay-line with summer (integrator), or in software either in time or frequency.  In the time case, the time series of the transmit pulse is reversed and point by point multiplied to segments of the received signal then summed.  The process is moved 1 point and repeated.  We have implemented the scheme in the frequency domain where the conjugate of the transmit pulse spectrum is multiplied to spectrum of the received signal.  The correlation time series is then the inverse transform, here implemented using Discrete Fourier Transforms (DFTs), showing correlation as a function of time (or range).  The ability to do large DFTs (>65000 point) allows the significantly faster and more computationally efficient use of the frequency case versus the time case in implementation.

A useful aspect of this arrangement is that the resolution in time of the correlation is inversely proportional to the bandwidth of x(t).  In actuality, the time-bandwidth product is the more determining factor, as there is finite time to realize signal energy across the band.  This should indicate that a signal with 80 KHz bandwidth would have a temporal resolution of 12.5 (sec.  At 1500 m/s (nominal sound speed in water), this is a spatial resolution of 18.8 cm.  To adequately generate either a LFM or PRN signal of this type requires a transmit signal of about 1 msec, or about 1.5m in space.  

The matched filter offers, then, a couple of significant benefits:

1. An optimal receiver against white noise (maximization of SNR) and

2. Significant increase in spatial resolution by using long, broadband pulses.

3.2.3
Fuzzy Min-Max Neural Network Classifier

Fuzzy min-max neural networks represent a synergism of fuzzy sets and neural networks in a unified framework.  The use of fuzzy sets as classes and as clusters has been well known for over 30 years (Zadeh, 1965; Ruspini, 1969).  Fuzzy min-max neural networks create fuzzy set classes and clusters in a similar fashion with a membership function based on a hyperbox core.  Fuzzy min-max neural network classification (Simpson, 1992) creates classes from the union of fuzzy sets.  Fuzzy min-max neural network clustering creates clusters from individual fuzzy sets (Simpson, 1993).  Fuzzy min-max neural network function approximation is an evolution of this family that utilizes fuzzy sets as the basis functions for function approximation (Simpson & Jahns, 1993).
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Figure 6.  Fuzzy Min-Max Classifier Topology 

Fuzzy Set Definition.  A fuzzy set  is defined as an ordered pair


 = {x, m(x)} x  X
where X is the entire space of objects, x is an object from X, and m(x)  1 is a membership function that describes that degree to which x belongs to the set .

Fuzzy Sets as Classes.  Fuzzy sets bring a new dimension to traditional classification systems by allowing a pattern to belong to multiple classes to different degrees.  Each fuzzy set is a separate class.  In the fuzzy min-max classification neural network, a fuzzy set is defined as a membership function created from the union of hyperbox-based fuzzy sets.  If the patterns being classified have only one dimension, the hyperbox membership function collapses to the common trapezoid membership function.

Notation.  Fuzzy min-max  hyperboxes define a portion of the pattern space designated for a given class.  The aggregate of hyperboxes for a class is used to describe the class distribution and its decision boundaries.  The following parameters used by the classifier.

1. Hyperbox Classes.  Each class in the FMMC algorithm consists of a set of fuzzy set hyperboxes.

2. Unit Valued.  It is assumed that the input patterns, Ah, are scaled to lie within the unit hypercube, meaning that each value of each dimension lies in the range [0,1], If the input pattern does not lie within the unit hypercube, it must be rescaled.

3. User-Defined Parameters.  There are two parameters in the algorithm:

· Hyperbox Size: This parameter, (, lies within the range from 0 to 1 and is used to determine the maximum size any hyperbox can reach. This value represents the average length of each side of an n-dimensional hyperbox.

· Hyperbox Sensitivity: This parameter, (, lies in the range 0 to (, and determines how quickly the membership function decreases with respect to distance from the hyperbox. Points that are in the hyperbox receive a value of 1. Points outside the box have larger values as they move closer, in Hamming distance, to the hyperbox. For large values of this parameter, the membership value decreases rapidly. For small values, the membership value decreases slowly with distance.

4. Topology.  The topology of the neural network that is being used for classification is shown in Figure 6.  The input layer has n processing elements (PEs), the hidden layer has p PEs, and the output layer has m PEs.  Each hidden node (hidden-layer PE) represents a fuzzy set.  There are dual connections between the input layer and the hidden-layer PEs and there are single connections between the hidden-layer PEs and the output-layer PEs.  One set of connections from the input-layer to the j´th hidden-node layer PE represents the min-point for the j´th hyperbox and are represented by the vector Vj.  The other set of connections from the input layer to the j´th hidden-layer PE represents the max-point for the j´th hyperbox and are represented by the vector Wj.  The connections from the hidden-layer to the output layer are binary valued, with a unit valued connection from the hyperbox Bj to the corresponding class ck, and zero-valued connections elsewhere.

5. Hidden-to-Output Connections.  The mathematical description of the fuzzy min-max neural network classifier uses a set of connections from the hidden layer to the output layer.  It is much faster to replace this set of connections with a label for each hidden-layer PE that identifies which class that hidden-layer PE is associated with.  In the following description, the mathematical description will include the hidden-layer to output-layer connections, but the algorithm description will use the hidden-layer PE labels.

6. Variables.  The following variables are used by the FMMC neural network:

Ah  [0,1]n
h´th input pattern Ah = (ah1, ah2, ..., ahn),

Ah  {1,m}
class label for the h´th input pattern Ah,
h
index for the patterns. The number of patterns is not specified here. It is not necessary for the algorithm to have this information because it is an on-line learning clusterer,

n
number of dimensions for the input patterns and the input layer,

p
number of fuzzy set hyperboxes,
m
number of classes,


the slope of the membership function. A value of  = 1.0 will guarantee that the membership function will cover the entire space. Values greater than 1 will sharpen the sides of the trapezoidal membership function,

Vj  [0,1]n
min vector for the j´th hyperbox fuzzy set, Vj = (vj1, vj2, ..., vjn), j = 1, 2, ..., p, and

Wj  [0,1]n
max vector for the j´th hyperbox fuzzy set Wj = (wj1, wj2, ..., wjn), j = 1, 2, ..., p.

Uk  {0,1}p
the unit-valued connections from the hidden-layer to the k´th output layer PE, k = 1, 2, ..., m.  This value is only used in the mathematical description.  In the implementation, this vector of values is not needed; this notation is only used in the mathematical description of the algorithm.

bj
the value of the j´th hidden-layer PE.  This value corresponds to the degree of membership of the input pattern in this hyperbox fuzzy set.  The corresponding label for this PE is Bj..

ck
the value representing the degree of membership in class k. This value is the fuzzy union of the hyperbox fuzzy set membership values for those hidden-layer PEs associated with class k.
Cg = {Bj | Bj represents class g}
 the set of hyperboxes that represents class g. 

Cg’ ( Cg
 the subset of Cg that can still be considered for expansion during the processing of the current input pattern. 

Learning.  The basic learning algorithm allows hyperboxes from different classes to overlap.  This overlap represents ambiguities in the parameters used to describe a machines fault condition.  For those fault conditions that do not completely fit within a set of known parameters (i.e., they do not fit within a hyperbox designated for any known condition), a degree of membership, or similarity, will be reported for all of the known fault conditions relative to the unknown condition.  The learning algorithm is as follows:

1. Find the hyperbox Bj that is closest to the input Ah, where Bj and Ah belong to the same class. The closest hyperbox is determined by the largest membership value. The membership value for the j´th hyperbox is calculated using the equation





(1)


where ( is the sensitivity parameter and (() is the augmented ramp function





(2)

2. If a hyperbox Bj is found, then determine if it can expand to include the pattern Ah, where the maximum of any hyperbox is predefined by the user.  The equation that must be satisfied for hyperbox expansion is





(3)

3. If the hyperbox Bj can expand to include the pattern Ah, then expand it and skip to step 4 to determine if the hyperbox Bj overlaps any other hyperboxes from other classes. The equations for expanding the hyperbox Bj (which corresponds to the hidden-layer bj and its connections) are





(4)


for the min connections, where i = 1, 2, ..., n, and





(5)


for the max connections, where i = 1, 2, ..., n. 

4. If the hyperbox Bj cannot be expanded, then temporarily remove Bj from the set of hyperboxes for this class and return to step 2 to find the next closest hyperbox.

5. If a hyperbox Bj is not found, then use the input pattern Ah to create a new hyperbox of volume 0, and add this hyperbox to the set of hyperboxes associated with this class. The equation for creating a new hyperbox bj is





(6)


Get the next input pattern, Ah +1. 

Recall Algorithm.  Given an input pattern, compute the degree to which A fits within each of the existing hyperboxes fuzzy sets using equation (1) and compute the fuzzy union (max) of each membership function response for each class using the equation





(7)

There are two ways that the class membership values can be used:  (1) if a hard decision is required, the largest membership value can be found and the index (representing the class) is reported; or (2) if soft decisions are preferred, report each of the membership values.

Classifier Properties.  The Fuzzy Min-Max Classifier exhibits the following important properties:

· Incremental Learning.  The FMMC algorithm can add new classes without any retraining.  In addition, class boundaries can be refined with new data without retraining using old data.

· Novelty Detection.  Because classes are defined by the union of hyperbox fuzzy sets, novel patterns are not near any existing hyperboxes in the parameter space and, therefore, produce low class membership values for all classes.

· Rapid Adaptation.  New patterns are added to the existing classifier with a single pass through the existing hyperbox fuzzy sets, resulting in extremely fast training.

· Explanation Facility.  Each hyperbox can be decomposed into a set of classification rules.  As such, a dimension by dimension explanation of how each classification decision is made is available to the user.  Furthermore, work by Abe & Lan (1995) has shown that fuzzy min-max hyperboxes can be translated into a rulebase, which provides another avenue of classification decision examination.

· Sparse Data Generalization.  The expansion of hyperboxes provides the ability to cover patches of the parameter space between sparse populations of class exemplars.  As such, this technique provides robust classification with sparse data sets.

· Incomplete Data.  When parameters are missing, the classification process can be altered to eliminate those dimensions during classification.  Input dimensions that are missing or are considered to be unreliable are given negative values.  During the membership calculation, the negative-valued dimensions are ignored.  The membership function can also detect when all dimensions are negative-valued and assigns a zero membership under this condition.

· Feature Selection.  It is possible to utilize an evolutionary programming training technique to evolve a set of features that maximizes robust classification (Brotherton, et al., 1994).

3.3 Data Collection Methodologies

SciFish has employed three different data collection strategies:  Tethered fish data collection, Caged fish data collection, and Free-Swimming data collection.  Each methodology is described in the following three sections.

3.3.1
Tethered Fish Data Collection

SciFish has developed a tethering technique that allows echo data collection from the surface to the bottom.  This approach is shown below in Figure 7.  A line is fastened to an anchor or a weight.  The live fish is then wrapped in a small mesh net and hung along the line in the dorsal aspect.  The anchored line is then dropped directly below the transceiver during slack water (when the tide action is minimal).  The transceiver’s beam is then adjusted until a strong return is received from the tethered fish.  At this point data can be collected for each of the signal types (CW, FM, and Barker).  Aggregations of as many as five fish were tethered during data collection using this approach.




Figure 7.  Illustration of Tethered Fish Data Collection

With tethered collection, the ground truth is extremely reliable.  The position of the fish, its range to the bottom, its species, sex, and size, and the number of fish are completely defined prior to collection.  This ground truth information is essential to the training process.  The tethering approach provides the control that will be needed to capture the massive amount of data that will be used to explore the full capability of the broadband fish identification approach across a wide range of species and under varying bottom conditions.

3.3.2
Caged Fish Data Collection

Caged fish data collection represents a compromise between the desire to have the fish swimming freely and the desire to contain the fish within the sonar's beam.  SciFish has developed a methodology for caging the fish that utilizes a commercial fishing vessel as the laboratory.
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Figure 8.  Fish Cage (Tank) Configuration on Fishing Vessel

The Fishing vessel, the F/V Lady Simpson, is nearly 100 ft in length and has two large fish holds below its deck.  As the cut-away pictorial representation shows in Figure 8 above, one hold contained all the captured fish (the aft hold) and the other (the forwad hold) was used for the sonar experiments.

The fish are caught using a longline.  Immediately upon being brought aboard, the fish are transferred to fish storage where circulating sea water is used to keep the fish alive.  The fish are left in the storage tank for at least a day to allow their bladders to equilibrate to one atmosphere.  Following equilibration, fish are selectively transferred from fish storage to the fish tank using a dip net.  The fish are then pinged upon in the fish tank and returned to fish storage.  Upon completion of the experiments, the fish are then destroyed and disposed to the local dump.

3.3.3
Free Swimming Fish Data Collection

The data from the tethered collections will be used to evaluate this instrument’s capability to identify free swimming fish during trawl surveys.  This approach, shown below in Figure 9, was used by SciFish in Lake Michigan in a joint experiment with the National Biological Survey in 1995.  During free swimming data collection, the transceiver is either attached to the hull below the water line or attached to a towed body and deployed over the side of the vessel.  Fish echoes are only collected within the depth interval of the trawl.  When the trawl is retrieved, the fish captured in the trawl are measured and these statistics are compared against the fish identifications made by the broadband sonar.




Figure 9.  Illustration of Free Swimming Fish Data Collection

Performance evaluation during free swimming fish data collection does not provide the same reliability as tethering.  During free-swimming data collection, not all the fish that pass through the sonar beam end up in the trawl and not all of the fish found in the trawl passed through the sonar beam.  Hopefully, the sample size of the fish caught in the trawl is large enough that a statistical comparison between catch and sonar identifications can be validated.  In those instances where the majority of the fish caught by the trawl are of only one species, the reliability of these experiments will increase.

4.0
RESULTS

To validate this concept, one must show that it works not only in laboratory conditions (i.e. controlled conditions) but under a variety of field conditions as well.  In the earlier work on this project, SciFish learned that there can be significant differences in the returned spectrum between live and dead specimens, and rigidly captive vs. free-swimming animals.  We determined that physostomic type fish (such as pollock in saltwater or alewives in freshwater) had significant shifts in spectral response, because of their active control of their bladder for buoyancy.  One the other hand, physoclistic type fish (e.g. rockfish in saltwater or bloaters in freshwater) were found to be more susceptible to absolute variations in pressure, with detrimental effects to their welfare.  With these facts in mind, we set out a program to acquire verifiable data in a wide variety of real-world situations, animal sizes, types and ages.

4.1
Data Collection

SciFish planned and executed 3 major collection trips during this period:  1) in situ data collections aboard the 215’ NOAA/NMFS research vessel R/V Miller Freeman R-223 in the Bering Sea, and 2) the 75’ USGS/BRD research vessel R/V Grayling in Lakes Huron and Michigan, in Michigan, and 3) for more laboratory type collection aboard the 103’ fishing vessel F/V Lady Simpson in Prince William Sound, Alaska.  For the Miller Freeman and Grayling data collections, we sampled the trawl region acoustically before and/or after mid-water trawls.  Also on the Miller Freeman collections, different trawl types were occasionally used: either the standard mid-water trawl net (mouth opening of ~10m x 12m) or the Method type net with a fine mesh and a rigid mouth for plankton and young of year (YOY) samples.  Similar to the Freeman, sampling of the water column aboard the Grayling utilized a smaller towed net of about 6m x 8m mouth opening.  The Lady Simpson offered the unique ability to collect specimens via standard long-line fishing techniques, allow them to acclimate to the reduced pressure in a 3000 cubic foot circulating water tank, and examine their free-swimming acoustic returns in the confined space of another smaller tank on a single species basis.  These latter tests proved the most controlled tests of the series.

4.1.1
Bering Sea Data Collection - R/V Miller Freeman
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Figure 10.  Broadband Sonar Deployment in Bering Sea

The Miller Freeman Cruise 97-08 occurred between 7 August and 6 September 1997; leg 2 of the semi-annual Pollock survey from and to the port of Dutch Harbor, Aleutian Islands, Alaska under the direction of Fisheries Scientist Dr. Neal Williamson, Chief Scientist.  Sixty standard or bottom hauls (trawls) and 3 Method hauls were made, each accompanied by location (latitude, longitude, depth range) of the haul along with species numbers and total weights, and length and sex data on Walleye Pollock (Theragra chalcogramma).  Thermal structure data (typically 10 to 3ºC) was obtained via MBT package located on the trawl headrope.  SciFish acquired 98 separate records of fish echoes during that voyage, including all pulse types (both up and down Linear FM Chirp, pseudo-random noise – PRN via Barker code- and some CW single frequency) to depths of 125m (386’).  The Miller Freeman operated sonars at 38 and 120 KHz (SIMRAD EK-500’s) as well as 160 and 300 KHz netsounders (SIMRAD and WESMAR), which all interfered with the SciFish 2000.  The immediate resolution to that problem was for our system to operate only after the haul, over the same track as the haul in the opposite direction.  This solution had the advantages of seeing the catch composition prior to deploying the system and to compare “before and after” views of the area.  Our intent was to capture the mono-species, mono-age groups as much as possible.  We were able to qualitatively determine that the distribution of targets was similar after the haul to the haul period, by observation of the 38 KHz trace and our own outputs.

4.1.2
Great Lakes Data Collection - R/V Grayling

The Grayling cruises occurred in August of 1995, August of 1996, October of 1997 and July of 1998 in Lakes Michigan, Charlevoix and Huron under the leadership of Fisheries Biologist Guy Fleischer, Chief Scientist.  The thrust of the work of the Grayling is to manage the prey stocks, which support the sport fisheries for salmonids in the Great Lakes. In a fashion similar to the Freeman data collection, multiple trawls and acoustic runs were made over the same track.  Hauls were made in specific segments of the water column, including multiple trawls at different depths to quantify species separation due to the strong summer thermoclines (20 to 4ºC) available in the Great Lakes.

All work on the Grayling occurred at night, to observe bottom dwellers that vertically migrated into the water column in low light conditions.  Water property data was obtained with BT drops using a SBE CTD (Sea Bird Electronics - Conductivity, Temperature, Depth sensor) at the site.  Temperature is critical to the distribution of particular species in the Great Lakes; an aid in identifying targets and trawl regions.  Again, interference with the netsounder and hull mounted 120 KHz (SIMRAD EK-125) sonars necessitated the separation into acoustic and haul runs along the same track.  Once again, similarities in target densities and positions were qualitatively observed between the respective systems.  Unfortunately, the most recent, and we feel best, data set from the Grayling has not been fully examined.
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Figure 11. Fish Samples Collected By UGS Scientists in Lake Huron

4.1.3
Prince William Sound Data Collection - F/V Lady Simpson

From the outset, the data collection on the F/V Lady Simpson (SciFish’s Pat Simpson and Skip Denny, Chief Scientists) was intended to provide ground truth via single species testing.  We proposed, and accomplished, collecting a set of animals from at least 7 species from a set of commercially important fish, or types of fish found in company with commercially important species.  Data on 9 species was collected in the May 10 to May 21, 1998 trip out of Whittier, AK: Pacific Cod, Walleye Pollock, Black Cod (Sablefish), Pacific Halibut, Rockfish (unfortunately few survived the haul up from 100-200 fathoms), Arrowtooth Flounder, Dog fish (a small shark), Skate, and one Pacific Angler.  The forward fish hold was partitioned off with wood lattice to keep the animals confined to the locale of the beam, without being in the acoustic beam itself.
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Figure 12. Broadband Sonar Deployed in Cage Configuration Aboard Lady Simpson in Prince William Sound AK

The footprint of the MRA (Major Response Axis) of the beam on the sand lined tank bottom was ~ 5’2” in diameter with the lattice spread at 5’7”.  Animals were placed in the tank, each measured and photographed, in single species, free swimming aggregations.  In the case of bottom fish, 1 or 2 animals were tethered with light mono-filament fishing line to keep the animal(s) in an area where the acoustic response could be gated out from the bottom reflection for an echo uncontaminated with the sand bottom return.  Other data collection trips on the Lady Simpson were also conducted in May of 1997, May and October of 1996, and May of 1995 resulted in different data sets of data and a proofing of equipment and techniques.  

4.2
Data Analysis

4.2.1
General Results

The SciFish 2000 was designed, conservatively, to return echoes from –40 dB targets (small, low reflectivity fish) with 40 dB SNR from ranges of at least 150m.  These requirements were developed to maintain an ability to classify targets based primarily on their return spectrum, which must have sufficient SNR to avoid contamination by any adjacent reflector.  Our experience with the practical system indicates that these stringent constraints may be relaxed, and that we can increase our range to as much as 500m (~1500’) on the same targets with no loss in detectability or, more importantly we believe, ability to classify.  Our analysis of data to date indicates that we can not only detect targets to at least 150m, but easily separate the returns from the much more significant bottom return and classify.  It appears that the ability to classify is due to the “coloration” of the bottom return by the animals spectra (examples will be shown below).  The detectability is due to the application of a Matched Filter signal processing scheme which provides an increase in resolution with increased pulse length and increased bandwidth (called a Time-Bandwidth Product).  In our current system, we can, and do, achieve 2cm resolution with a pulse length in excess of 1 millisecond (msec) which by itself corresponds to a spatial resolution of ~1.5m (~5’).  A comparable resolution with a conventional single frequency (CW) system would require a pulse length of about 13 microseconds ((sec), which would severely limit the amount of real power that can be put into the water, thus shortening range.  In addition, the short CW pulse has no ability to classify beyond determination of target strength (TS).  The SciFish 2000 uses a frequency range of ~110 to ~190 KHz with either FM chirp (LFM) or a noise sequence from phase modulation of the base, resonant, frequency from a special pseudo-random sequence based on the Barker Code.  This latter coding has the characteristic of providing an optimal autocorrelation and the 13 element code can be repeated to extend the pulse length.

We present the results of our testing by cruise type (i.e. Miller Freeman, Grayling or Lady Simpson), however within each category will be reports on efficacy of pulse type and spectral averaging.  In general, averaging increased the rate of identification by about 10% for 5 independent samples over single echo classification and reduced false positive results as well.  A 10 echo rolling average (1-10, 2-11, 3-12, etc.) also increased the identification rate and may be simpler to implement.  We saw little or no difference in identification rates between fresh and salt-water animals.  Typical identification results were about 85% accurate, with several conditions resulting in 100% identification.  Our ability to detect multiple targets and targets near the bottom, the “dead zone”, has not achieved full capability.  We are currently using a replica of the transmitted pulse that is hardware clipped (to protect the receive electronics) and which produces perfectly adequate frequency content, but inaccurate source level information.  We expect better correlations and ability to detect near bottom features when we implement the next changes to the hardware later this year and a more sophisticated detection algorithm.  In spite of that limitation, we were consistently able to detect targets easily within 20cm of the bottom.  This dimersal region is frequently the habitat of mid-water species, particularly during daylight hours in shallow water.  This phenomenon was observed in both the Bering Sea and the Great Lakes.
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Figure 13. Example of an Oscilloscope Display of a Sonar Ping with TVG Applied (TS vs. Depth)

The Matched Filter is applied to all broadband pulse types, as it is dependent on information regarding the spectral output of the transmitter.  The technique essentially looks for the signature of the output pulse in the return signal, thus filtering out erroneous signals such as other sonars.  In classical signal detection, the energy envelope is detected, regardless of source.  The matched filter will render a low correlation to most other transmitted signals, thus reducing interference.  Examples of representative signals and their matched filter output are shown here, for a PRN pulse and showing the spectra of the tethered target at 1.88m depth (Figure 13).  The bottom here is 3.05m (~10.5’) with multiple reflections off of the bottom and surface showing up at 6m and again 9m depth.  The actual 2nd bottom return is less than the original, however we have applied a spherical correction (40 Log R)  to the entire file.  The correct adjustment for the seafloor is 20 Log (2R), which would result in a much lower value, and would be applied for circumstances where we desired correct information regarding the reflectivity of the bottom.  The filter match for the tethered fish can clearly be seen (amplitude ~.25) at about 2m depth, with the initial bottom return at about 3m (Figure 14).  The additional returns from the bottom region are due to reflections off of the containment structure inside the tank (cedar lattice) via the bottom.  The 3rd plot in the sequence is the spectra obtained from the time series originating at the peak of the matched filter output, here from the tethered Black Cod (Sablefish) (Figure 15).

[image: image12.png]Matched Fiter

Range (m]

worpazon



 

Figure 14. Correlation Values vs. Depth for Ping Shown in Figure 13
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Figure 15. Spectra of Sablefish Detected in Figure 14
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Figure 16. Spectra of Second Target Detected in Figure 14
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Figure 17. Broadband Sonar Deployed in Cage Configuratoin Aboard Lady Simpson

The phenomena of spectral “coloration” we observed can be seen in the following series of graphs.  We show echoes and spectra from mid-water, near bottom and bottom with a single species of fish in the controlled environment of the tank on board the Lady Simpson.  The first echo spectra is representative of a Black Cod (Sablefish) tethered at about 2m depth ensonified with a LFM (down) pulse (Figure 15).  Other Black Cod were also present at the bottom of the tank.  These animals were approximately 50-70 cm long (~20-27”) and 15-20 cm in diameter (~6-8”) and represent a significant target.  We note that with our resolution, we were able to detect and discriminate these animals from the bottom.  In the next plot (Figure 16), it is easy to observe the shifting of the spectrum from that of the fish to that of the bottom, in overall amplitude and specific spectral regions.  It is akin to the “morphing” done with pictures in recent movies.  The bottom echo begins at about 3.045m, thus the 2nd echo has a significant contribution from the bottom.  The 3rd echo is virtually all bottom with an additional 10 dB in magnitude of the peak spectrum (clipped in the graph) (Figure 17).  As will be seen in the late sections, the SciFish 2000 system does effectively differentiate these echoes and correctly identifies the species.

In November, 1997, we obtained a second unit which had several different characteristics.  This unit had both wide (~15() and narrow (~4() beamwidths and an added power amplifier to push the source level from 50 to 250 Watts (an added 17 dB).  The wide beam enabled us to perform the tank tests and have our targets outside the nearfield of the transmit array.  The added power enabled either greater range or better SNR for the target ranges.  Some additional changes were also noted; the power amplifier appears to generate extra spectral lines, depending on loading conditions.  Therefore, some pulse types rendered different spectra between the 2 units.  For this reason, the analysis was conducted using the pulse type that gave the better results for a particular location, sea condition and transducer combination.  Overall, we observed no appreciable difference in ability to detect or classify with any particular pulse type given equal spectral outputs.  We observed similarities in the returned spectra even with modest differences in the output spectra.  Additional work this year will characterize and more fully understand these differences.

4.2.2
Bering Sea Analysis - Marine Free Swimming Fish

The Freeman results are based on almost always, mixed species data validated with trawl counts.  Where a species dominated an identifiable segment of the sampled water column, we considered those spectra to all originate from the dominant species.  Where it was difficult to differentiate, we show the combination in the title for those spectra and for mixes in age (size) we attempted to get the proportions of differing spectra compared to the length distribution data.  Several comparisons were made to test the ability to detect a given test species from other species in different environments (e.g. only mid-water species, or all distinct species regardless of physical locale).  In all cases, we were able to achieve at least 62% identification, even between the bottom and a bottom with flatfish.  In the best of cases, we achieved 100% correct, 0% false correct identification.

For all of the Freeman data, the LFM down pulse was used, as it appeared slightly better than either up LFM or PRN.  Classification was performed on collections of over 1000 echoes.  The following tables break out the identifications in segments of interest, i.e. answering questions such as can we differentiate between age/size categories?  Can we identify mixed species in the water column?  Can we differentiate when species are near or on the bottom?  What are the effects of averaging echoes on ability to discriminate?

The tables below give the percent correct responses (and sometimes false correct or incorrect) given the collection of species compared.  This represents the ability of the SciFish 2000 to discriminate between that particular collection of animals.  Trawls were conducted in depth ranges from 20 m to 150 m, predominantly over the Bering Sea shelf.  The POP/Rockfish haul occurred near the shelf edge, and the haul dominated by flatfish occurred near-shore of the Aleutian Islands.  It appeared the upper 30 m of the water column was filled with jellyfish and YOY Pollock, with older Pollock below the thermocline.  Pollock were frequently found in mixed age groups (see picture in previous section) as the older fish prey on it’s own young.  Pollock target size is from –38 to –36 dB.  The daytime hours usually find them concentrated in balls, with a significantly higher TS due to the n*Log(n) summation of echoes.  At night, they tend to disperse and provide single targets.  The oldest fish tend to be dimersal and hide in bays amongst rocks.  The pollock fleet fishes for the 4-6 YO sized animals (~45cm fork length).

Table 7.  Collection of 4 mid-water species, 10 echo average, 1020 echoes


Species
%
Correct
% False Correct

2 YO Pollock
97.3
7.6

Adult Pollock
85.6
1.4

Euphausids
100
0

POP/Rockfish
98.3
0

Table 8.  Comparison of adult (4-5 YO) and 2 YO Walleye Pollock.

Species
% Correct

2 YO, 20 cm length
87

Adult (4-5 YO), 45 cm length
75

Table 8 demonstrates that the system is capable of differentiating age groups, thus allowing the user to reduce bycatch and to become more efficient in the overall operation, thus preserving resources in fuel, time, effort and unwanted or juvenile fish.  

Table 9.  Effects of averaging: 5 independent echo averages, 6 species in Bering Sea

Species
% Correct

2 YO Pollock
73

Adult Pollock (4-5 YO)
81

Euphausiids
90

Northern. Rockfish / Pacific Ocean Perch
91

Flatfish (Halibut, Skate, Flounder)
67

Bottom
62

Table 10.  Effects of averaging: 10 sliding echo average, 6 species in Bering Sea,
1124 echoes processed overall 87.4% correct

Species
% correct
% false correct

2 YO Pollock
95.7
7.4

Adult Pollock
82.2
1.6

Euphausiids
96.5
0

Northern Rockfish / Pacific Ocean Perch
96.5
0

Flatfish (Halibut, Skate, Flounder)
84.0
3.0

Bottom
72.2
0.7

The effects of averaging appear to assist classification by about 10%, and usually decrease false classifications somewhat.  The greatest difficulty in identification in this data set was between the bottom and bottom containing flatfish and the discrimination between age groups.  Insufficient or non-existent data is available regarding sex differentiation, and this topic cannot be addressed at this time.  With this portion of the system development concentrated on round-fish and mid-water species, more sophisticated processing of the flatfish data will occur at a later date.

4.2.3
Great Lakes Analysis - Freshwater Free-Swimming Fish

In order to support management of prey stocks for salmonids (trout and salmon), detection and classification a significantly smaller target is presented.  While Bloaters (Whitefish, a physoclist) present large targets due to their air bladder size and shape, Smelt and Alewives present a –40 to –38 dB target.  In addition, each species has specific temperature requirements and reside in specific sides of the sharp summer thermocline.  Thus, identification of targets can benefit from knowledge of the thermal structure, and exactly where the trawl net operates.  A benefit of working in fresh water is the reduction in absorption due to the lack of salts.  However, the bottom of much of Lakes Huron and Michigan is a highly reflective limestone, making detection of animals near bottom that much more difficult.  Because of this latter problem, a habit of data collection at night has been established when the more dimersal species move up into the water column away from the bottom.  This has 2 advantages, easier time gating of the returns, and less damage to the trawl nets from contact with the rocky bottom.

This data set was collected in the summer of 1996 at a depth ranging from 10 to 20 m (33-66’) in Lake Michigan.  Diffferentiation between 3 species that often occupy the same segment of the water column is obviously no more difficult than working in the Bering Sea.  Stickleback present the only problem, apparently looking like smelt.  This data was collected with the older of the 2 systems.

Table 11.  Confusion matrix of Great Lakes preyfish, % identified

Real\Computed
Alewife
Smelt
Stickleback

Alewife
80
16
4

Smelt
5
91
4

Stickleback
6
22
72

4.2.4
Prince William Sound Analysis - Marine Caged Fish

This particular data set, from May of 1998, comprises the best collection of single species data taken to date.  The goal of this trip was to get sufficient numbers of a set of at least 8 commercially important species, where data could be taken on multiple individuals in a free-swimming condition.  Previous experience had identified this set as the most desirable and potentially the most difficult to achieve.  By tethering some individual animals, and allowing the remainder to swim free, we were assured of known echoes gated without the bottom interfering, and echoes in conjunction with a typical bottom (sand) as one would most often find them.  The fish were allow at least 24 hours to acclimate to the reduced ambient pressure.  Observation of the behavior of each set showed them to behave in a “normal” manner, without obvious difficulty moving about.  All of the specimens appeared to be healthy, without lesions or large parasites.  Most swam off without difficulty when released.  The fish were obtained in water depths from 30 to 200 fathoms in Prince William Sound via long line in 2 separate days of fishing.  No fish was kept more than 6 days, and always in a tank with circulating water.

The tank for the test was ~11’ high X 22’ wide X ~ 20’ long, steel fish hold partitioned with cedar lattice and netting to a vertical column 5.5’ X 5.5’ X ~10.5’ high.  An 8” sand layer bottom was added to provide a more realistic bottom reflector, and to help dampen any other noises or interfering signals.  The ship often had a 43 KHz sounder operating, which was observed in the full spectra.  However, this signal appeared to be out of the critical data region with no interfering harmonics.  The wide beam of the new transducer was used for all of the data collected here, as it’s far-field range is ~0.5m vs. the narrow beam’s far-field distance of ~ 5.0 m.  Low transmit power and low receiver gain were used throughout.

Two pulse types are presented in this data; a 1.014 msec PRN and a (usually) 839 msec down chirp (LFM).  An additional CW pulse was also taken for security, but is not presented here.  25 to 100 pings were made on each set of animals.  As many as 14 individuals of a species were present in the tank at one time.  Data collection had to be halted at one point when a large mass of copepods was pumped through the tank.  The resulting reverberation was deemed to high to assure good data, and visibility within the tank was so low as to not know were the target fish were in the water column.  All data were taken in sheltered bays to minimize ship motion and provide an adequate supply of clean water to circulate in the tanks. The term interacting bottom derives from the animal being close enough to the bottom such that the normal pulse length extends into the bottom material.  This is known as the “dead zone” in some texts.

The data are analyzed first as a set of individual echoes, automatically extracted via the matched filter, and then averaged in sets of 5 independent echoes with no overlap.  Sets of 10 sliding average echoes were also examined, but provided no useful information beyond these sets.  The use of 10 average or 5 average sets is quite similar, and the independence is a stronger mathematical result.  The entire set of echo data was combined, so that classification was made in the presence of random echoes of each species and the combined species with bottom return.

Surprisingly, the best classification was with a single species and the interacting bottom.  In almost all cases, the stronger classification included the signature of the bottom.  As in other data sets, averaging improved the classification and reduced the false positive result in about the same order of magnitude.  This data came from the 2nd, newer transducer and in it we note better performance with a PRN pulse than the LFM.  Tables 12 and 13 are PRN data, Tables 14 and 15 show LFM data.  Tables 14 and 16 are individual echoes collected together in 2000 to 3500 sample arrays.  Tables 13 and 15 display the results of 5 independent averages from the respective individual sets, and the consequent reduced data.

Table 12.  Direct comparison of 3631 independent echoes, from 4 species + bottom interaction
PRN pulse, 84% overall correctly identified


Pacific Cod
P. Cod + Bottom
Black Cod
B. Cod + Bottom
Walleye Pollock
Pollock + Bottom
Dogfish (Shark)
Dogfish + Bottom

True positive %
73.7
84.8
88.6
88.0
78.0
98.0
83.5
99.2

False positive %
3.9
2.6
2.2
0.6
2.0
3.2
2.9
1.1

Table 13.  Comparison of averaged echoes, using 5 independent echoes averaged from Table 12 data, PRN pulse, 721 samples.  91.7% overall correctly identified

Pacific Cod
P. Cod + Bottom
Black Cod
B. Cod + Bottom
Walleye Pollock
Pollock + Bottom
Dogfish (Shark)
Dogfish + Bottom

True positive %
97.6
94.2
83.5
96.0
87.2
100
95.8
100

False positive %
5.2
0.4
0
0.6
0.9
0.0
2.5
0.1

Table 14.  Direct comparison 2211 echoes, LFM pulse, 4 species + bottom interaction,
74.4% overall correctly Identified


Pacific Cod
P. Cod + Bottom
Black Cod
B. Cod + Bottom
Walleye Pollock
Dogfish (Shark)

True positive %
64.0
58.4
60.9
100
91.8
93.7

False positive %
5.7
6.4
2.6
12.6
1.3
0.6

Table 15.  Comparison using 5 independent echoes averaged from Table 8 data,
 438 samples, 82.2% overall correctly identified

:
Pacific Cod
P. Cod + Bottom
Black Cod
B. Cod + Bottom
Walleye Pollock
Dogfish (Shark)

True positive %
80.0
73.7
81.5
60.0
95.3
77.3

False positive %
6.5
7.2
1.0
2.1
5.1
0.5

5.0 CONCLUSIONS

These results show that:

· Even during a development phase, the SciFish 2000 demonstrates accurate identification of species ~85% of the time.

· Different signal types have been investigated, with no clear winner as long as the basic broadband output spectrum is generated. 

· The system shows excellent robustness in the difficult area of the “dead zone” and shows a strong potential to resolve small targets while putting more energy into the water to build SNR and range capability.

· The system works equally well in fresh or salt water.

· Identification of species is possible in mixed species conditions, a frequent occurrence in typical fisheries.

· Detection of Euphausids in the Bering Sea, and the Copepods in Prince William Sound suggests additional use of the system for monitoring basic food chain stocks during searches for more commercially viable stocks.

· A more limited capability has been demonstrated (a lower classification record) in classifying the same species to an age or size.
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